Одноканальная смо с неограниченной очередью. Многоканальная смо с ограниченной очередью Одноканальная смо ограниченной длиной очереди

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью X; поток обслуживаний имеет интенсивность, обратную среднему времени обслуживания заявки Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

Среднее число заявок в системе,

Среднее время пребывания заявки в системе,

Среднее число заявок в очереди,

Среднее время пребывания заявки в очереди,

Вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности: в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому по той же причина

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

Канал свободен,

Канал занят (обслуживает заявку), очереди нет,

Канал занят, одна заявка стоит в очереди,

Канал занят, заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состояний имеет вид, показанный на рис. 20.2. Это - схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью А переводит систему слева направо, а справа налево - поток обслуживаний с интенсивностью

Прежде всего спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если строго меньше единицы то финальные вероятности существуют, а при очередь при растет неограниченно. Особенно «непонятным» кажется этот факт при Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле - не так.

При СМО справляется с потоком заявок, только если поток этот - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживаний стать хотя бы чуточку случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность - воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ряд сходится - это бесконечно убывающая геометрическая прогрессия со знаменателем . При ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний существуют только при ). Теперь предположим, что это условие выполнено, и Суммируя прогрессию в (20.11), имеем

(20.12)

Вероятности найдутся по формулам:

откуда, с учетом (20.12), найдем окончательно:

Как видно, вероятности образуют геометрическую прогрессию со знаменателем . Как это ни странно, максимальная из них - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО . Тут придется немного повозиться. Случайная величина Z - число заявок в системе - имеет возможные значения с вероятностями

Ее математическое ожидание равно

(20.14)

(сумма берется не от 0 до а от 1 до так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для

Теперь вынесем за знак суммы :

Тут мы опять применим «маленькую хитрость»: есть не что иное, как производная пор от выражения значит,

Меняя местами операции дифференцирования и суммирования, получим:

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом и знаменателем ; эта сумма равна а ее производная . Подставляя это выражение в (20.15), получим:

(20.16)

Ну, а теперь применим формулу Литтла (19.12) и наймем среднее время пребывания заявки в системе:

Найдем среднее число заявок в очереди Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус чйсло заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди равно среднему числу заявок в системе минус среднее число заявок под обслуживанием. Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили ). Очевидно, равно единице минус вероятность того, что канал свободен;

Следовательно, среднее число заявок под обслуживанием равно

Имеется n-канальная СМО с неограниченной очередью. Она характеризуется следующими показателями :

Предельные вероятности:

, , . . . , , ,…, ,… (10)

Вероятность того, что заявка окажется в очереди:

(11)

(13)

Среднее время нахождения в очереди:

(15)

Среднее время нахождения заявки в очереди:

Рассмотрим пример решения задачи многоканальной СМО с ожиданием.

Задача . В магазине к кассам поступает поток покупателей с интенсивностью 81 человек в час. Средняя продолжительность обслуживания кассиром одного покупателя tобсл = 2 мин. Определить предельные вероятности состояний и характеристики обслуживания узла расчета.

По условию λ=81(чел./час)= 81/60=1,35 (чел./мин.). По формулам (1, 2):

= λ/μ= λ * tобсл = 1,35 * 2 = 2,7

<1, т.е. при n > = 2,7. Таким образом, минимальное количество кассиров n =3.

Найдем характеристики обслуживания СМО при n=3.

Вероятность того, что в кассах отсутствуют покупатели, по формуле (9):

= (1+2,7+2,7 /2!+2,7 /3!+2,7 /3!(3-2,7)) = 0,025

В среднем 2,5 % времени кассиры будут простаивать.

Вероятность того, что в кассах будет очередь, определим по формуле (11):

P = (2,7 /3!(3-2,7))0,025 = 0,735

Среднее число покупателей, находящихся в очереди рассчитывается по формуле (13):

L = (2,7 /(3*3!(1-2,7/3) ))*0,025 = 7,35 (чел.)

T =7,35/1,35 = 5,44 (мин.)

Определим среднее число покупателей в кассах по формуле (15):

L =7,35+2,7=10,05 (чел.)

Среднее время нахождения покупателей в кассах находится по формуле (16):

T =10,05/1,35=7,44 (мин)

Среднее число кассиров, занятых обслуживанием покупателей, по формуле (12) =2,7.

Коэффициент (доля) занятых обслуживанием кассиров вычисляется по следующей формуле:

Абсолютная пропускная способность узла расчета A=1,35 (чел./мин), или 81 (чел./час), т.е. 81 покупатель в час. Анализ характеристик обслуживания свидетельствует о значительной перегрузке касс при наличии трех кассиров.

Системы массового обслуживания с ограниченной очередью

Имеется n-канальная СМО с ограниченной очередью. Число заявок в очереди ограничено числом m. Если заявка поступает в момент, когда в очереди уже m заявок, она не обслуживается. Такая СМО характеризуется следующими показателями :

Предельные вероятности:

(17)

, , . . . , , ,…, (18)

Вероятность отказа:

(19)

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число занятых каналов:

Среднее число заявок в очереди:

(23)

Среднее число заявок в системе:

Пример оптимизации СМО

Показатели работы системы массового обслуживания могут использоваться для решения оптимизационных задач.

Задача.

Определить оптимальное количество причалов в порту с минимальными затратами, если известно, что за год было обслужено 270 судов. Разгрузка одного судна длится в среднем 12 часов. Пеня за простой судна в порту составляет 100 тыс.р./сут.. Затраты на причал 150 тыс.р./сут. Расчеты приведены в таблице.

Решение.

По условию

λ=270(судов/год)=270/360=0,75(судов/сут.),

tобсл=12ч=12/24=0,5 сут.

По формулам (1, 2):

= λ/μ= λ * tобсл = 0,75 * 0,5 = 1,5

Очередь не будет возрастать до бесконечности при условии /n <1, т.е. при n > = 1,5. Таким образом, минимальное количество причалов n =2.

Найдем характеристики обслуживания СМО порта при количестве причалов n=2.

Вероятность того, что в порту отсутствуют суда, вычислим по формуле (9):

В среднем 1,4 % времени причалы будут простаивать.

Среднее число судов, находящихся в очереди рассчитывается по формуле (13):

Среднее время ожидания в очереди вычисляется по формуле (14):

T =1,93/0,75 = 2,57 (сут.)

Определим среднее число судов в порту по формуле (15):

L =1,93+1,5=3,43 (судна)

Среднее время нахождения судов в порту находится по формуле (16):

T =3,43 /0,75 =4,57 (сут)

Среднее число занятых причалов (12) =1,5.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке порта при наличии двух причалов.

Найдем суммарную пеню за простой судов в порту в сутки. Для этого перемножим пеню за простой судна в порту и среднее число судов в очереди:

= * L .

Определим затраты по обслуживанию причалов в сутки: = *n.

Для двух причалов в сутки

Суммарные затраты составят: С= + =193+300=493(ден.ед.)

Суммарные затраты по условию задачи должны быть минимальны.

Рассчитаем суммарные затраты для количества причалов n = 2, 3, 4. Расчеты приведены в таблице. Как видно из таблицы, минимальные затраты достигаются при n = 3. Следовательно, для минимизации затрат необходимо 3 причала.

Таблица 1.- Расчет оптимального числа причалов

Показатель Количество причалов
Интенсивность потока судов 0,75 0,75 0,75
Интенсивность обслуживания судов 0,5 0,5 0,5
Интенсивность нагрузки причала 1,5 1,5 1,5
Вероятность, что все причалы свободны 0,14 0,21 0,22
Среднее число судов в очереди 1,93 0,24 0,04
Среднее время пребывания судна в очереди, сут. 2,57 0,32 0,06
Среднее число судов в порту 3,43 1,74 1,54
Среднее время пребывания судна в порту, сут 4,57 2,32 2,06
Пеня за простой судна в порту, ден.ед./сут. () 100,00 100,00 100,00
Затраты по обслуживанию причала в сутки, ден.ед./сут. () 150,00 150,00 150,00
Суммарная пеня за простой судов в порту в сутки, ден.ед. () 192,86 23,68 4,48
Суммарные затраты по обслуживанию причалов в сутки, ден.ед. () 300,00 450,00 600,00
Суммарные затраты, ден.ед.(С) 492,86 473,68 604,48

Варианты заданий

Таблица 2 - Варианты заданий

Номер варианта
Задача
Номер варианта
Задача

1. В парикмахерской в зависимости от сложности стрижки, мастер выполняет работу в среднем за 30 мин. Посетители приходят в среднем через 25 мин. За каждый час работы мастер зарабатывает 300 ден.ед.. Очередь ограничена до 4 человек. Если в очереди больше 4 человек, клиент уходит, и потери за час составляют 150 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество мастеров.

2. Автомобили подъезжают на АЗС со средней частотой 2 автомобиля за 5 минут. Заправка автомобиля в среднем длится 3 минуты. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество колонок, чтобы средняя длина очереди не превышала 3 авт.

3. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. На осмотр и выявление дефектов каждой машины затрачивается в среднем 30 минут. На осмотр поступает в среднем 36 машин в сутки. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра не обслуженной. Определить вероятности состояний и характеристики обслуживания профилактического пункта осмотра. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,8.

4. В срочной мастерской по починке обуви в зависимости от сложности ремонта мастеру требуется в среднем 15 мин. Посетители приходят в среднем через каждые 14 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество мастеров, чтобы средняя длина очереди не превышала 5 заказов.

5. В справочной оператор дает справку в среднем за 4 мин. Звонки поступают каждые 3мин. Если операторы заняты, то звонок не обслуживается. Определить вероятности состояний и характеристики обслуживания справочной. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,75.

6. В зависимости от количества продуктов у покупателя кассиру в магазине требуется в среднем на один чек 2 мин. Покупатели подходят к кассе с интенсивностью 81 человек/час. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество кассиров, чтобы средняя длина очереди не превышала 4 покупателей.

7. Диспетчеру в АТП в зависимости от типа автомобиля требуется в среднем на выдачу одного маршрутного листа 20 минут. Заявки на автомобили поступают в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество диспетчеров, чтобы средняя длина очереди не превышала 2 заявок.

8. Требуется оценить работу АТС. Если все линий связи заняты, то абонент выбывает из системы. Звонки поступают с интенсивностью 2 вызов/мин.. Продолжительность разговоров распределена экспоненциально, и в среднем равна 1,5 мин. Определить предельные вероятности и показатели эффективности системы. Определить количество операторов, чтобы относительная пропускная способность АТС была не меньше 0,9.

9. В банке в зависимости от сложности запроса клиента кассиру требуется в среднем 10 минут. Клиенты подходят к нему в среднем через каждые 12 минут. Кассир зарабатывает 15000 ден.ед. за месяц. Очередь ограничена до 6 человек. Если в очереди больше 6 человек, клиент уходит, и потери за час составляют 200 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество кассиров.

10. В среднем на одну транзакцию у банкомата уходит 2 минуты. Клиенты подходят к нему в среднем через каждые 20 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество банкоматов, чтобы средняя длина очереди не превышала 2 человек.

11. В магазине продавцу в зависимости от покупателя требуется в среднем на одну покупку 10 мин. Покупатели подходят к нему в среднем через каждые 5 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество продавцов, чтобы средняя длина очереди не превышала 5 человек.

12. В отделе заказов мебельной фабрики менеджеру по продажам в зависимости от заказа клиента требуется в среднем на оформление одного заказа 25 минут. Клиенты приходят в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество менеджеров, чтобы средняя длина очереди не превышала 3 человек.

Порядок выполнения работы

1.Рассчитайте в системе Excel показатели системы массового обслуживания по формулам, приведенным в методичке. Количество каналов обслуживания n=1, 2, 3...k перебирается для нахождения оптимального значения по варианту. Предполагается, что входные потоки и обслуживание соответствуют пуассоновскому распределению.

2.Проведите анализ полученных результатов.

3.Составьте отчет.

1) Цель работы;

2) постановка задачи;

3) результаты расчетов, проведенных в Excel;

4) выводы по выполнению работы.

Контрольные вопросы

1. Что включает в себя понятие система массового обслуживания?

2. Какие существуют виды систем массового обслуживания?

3. Что относится к основным характеристикам и показателям эффективности систем массового обслуживания?

4. Укажите основные свойства (характеристики) входящего потока требований?

5. Перечислите основные особенности и характеристики систем массового обслуживания с ожиданием?

6. Каковы основные характеристики СМО с отказами?

7. Приведите примеры различных видов СМО?

Библиографический список

1. Афанасьев М.Ю. Исследование операций в экономике: модели, задачи, решения. / М.Ю. Афанасьев, Б.П. Суворов.- М.:ИНФРА, 2003.-444с.

2. Вентцель Е.С. Исследование операций. Задачи, приниципы, методология./ Е.С. Вентцель.-М.: Высшая школа, 2001.-208с.

3. Зайченко Ю.П. Исследование операций./ Ю.П. Зайченко.- К.: Вища школа, 1975.-320с.

4. Конюховский П.В. Математические методы исследования операций. / П.В. Конюховский.- СПб.: Питер, 2001.-192с.

5. Кремер Н.Ш., Путко Б.А. Исследование операций в экономике./ Н.Ш. Кремер, Б.А. Бутко, И.М. Тришин.- М.:Банки и биржи, ЮНИТИ, 1997.-407с.

1. Кудрявцев Е.М. GPSS World.Основы имитационного моделирования различных систем.- М.: ДМК Пресс, 2004.- 320 с.

2. Советов В.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа, 1985

3. Советов В.Я., Яковлев С.А. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1989

В систему поступает пуассоновский поток требований интенсивностью λ, поток обслуживания имеет интенсивность μ, максимальное число мест в очереди – т. Если заявка поступает в систему, когда все места в очереди заняты, она покидает систему необслуженной.

Финальные вероятности состояний такой системы всегда существуют, так как число состояний конечно:

S 0 – система свободна и находится в состоянии простоя;

S 1 – обслуживается одна заявка, канал занят, очереди нет;

S 2 – одна заявка обслуживается, одна в очереди;

S m +1 - одна заявка обслуживается,т в очереди.

Граф состояний такой системы показан на рисунке номер 5:

S 0 S 1 S 2 S m+1

μ μ μ ………. μ μ

Рисунок 5: Одноканальная СМО с ограниченной очередью.

В формуле для р 0 найдем сумму конечного числа членов геометрической прогрессии:

(52)

С учетом формулы для ρ получим выражение:

В скобках находится (m+2) элементов геометрической прогрессии с первым членом 1 и знаменателем ρ. По формуле суммы (m+2) членов прогрессии:

(54)

(55)

Формулы для вероятностей предельных состояний будут иметь вид:

Вероятность отказа в обслуживании заявки определим как вероятность того, что при поступлении заявки в систему ее канал будет занят и все места в очереди также заняты:

(57)

Отсюда вероятность обслуживания (а также и относительная пропускная способность ) равны вероятности противоположного события:

Абсолютная пропускная способность – число заявок, обслуженных системой в единицу времени:

(59)

Среднее число заявок под обслуживанием:

(60)

(61)

Среднее число заявок в системе:

(62)

Одноканальную СМО с ограниченной очередью можно рассмотреть в Mathcad.

Пример :

На стоянке обслуживается 3 машины с интенсивностью потока 0,5 и средним временем обслуживания 2,5 минуты. Определить все показатели системы.

6 Многоканальная смо с неограниченной очередью

Пусть дана система S, имеющаяп каналов обслуживания, на которые поступает простейший поток требований интенсивностью λ. Пусть поток обслуживания также простейший и имеет интенсивность μ. Очередь на обслуживание не ограничена.

По числу заявок, находящихся в системе, обозначим состояния системы: S 0 ,S 1 ,S 2 ,…,S k ,… S n , гдеS k состояние системы, когда в ней находитсяkзаявок (максимальное число заявок под обслуживанием -n). Граф состояний такой системы изображается в виде схемы на рисунке номер 6:

λ λ λ λ λ λ λ

……. …….

S 0 S 1 S 2 S m+1 S n

μ 2μ 3μ ………. kμ (k+1)μ …… nμ nμ

Рисунок 6: Многоканальная СМО с неограниченной очередью.

Интенсивность потока обслуживаний меняется в зависимости от состояния системы: kμ при переходе из состоянияS k в состояниеS k -1 так как может освободиться любой изk каналов; после того, как все каналы заняты обслуживанием, интенсивность потока обслуживаний остается равнойпμ, при поступлении в систему следующих заявок.

Для нахождения финальных вероятностей состояний получим формулы аналогично тому, как это было сделано для одноканальной системы.

(63)

Отсюда формулы для финальных вероятностей выражаются через

Для нахождения р 0 получим уравнение:

Для слагаемых в скобках, начиная с (n+ 2)-го, можно применить формулу нахождения суммы бесконечно убывающей геометрической прогрессии с первым членоми знаменателем ρ/n:

(66)

Окончательно получим формулу Эрланга для нахождения вероятности простоя системы:

(67)

Приведем формулы для расчета основных яоказателей эффективности работы системы.

Система будет справляться с потоком заявок, если

выполнено условие

, (68)

которое означает, что число заявок, поступивших в систему за единицу времени, не превосходит числа заявок, обслуженных системой за это же время. При этом вероятность отказа в обслуживании равна нулю.

Отсюда вероятность обслуживания (а также иотносительная пропускная способность системы) равны вероятности противоположного события, то есть единице:

(69)

Абсолютная пропускная способность - число заявок, обслуженныхсистемой в единицу времени:

(70)

Если система справляется с потоком заявок, то в стационарном режиме интенсивность выходящего потока равна интенсивности потока поступающих в систему заявок, так как обслуживаются все заявки:

ν=λ . (71)

Так как каждый канал обслуживает μ заявок в единицу времени, то среднее число занятых каналов можно вычислить:

(72)

Среднее время обслуживания каналом одной заявки;

. (73)

Вероятность того, что при поступлении в систему заявка окажется в очереди, равна вероятности того, что в системе находится более чем п заявок:

(74)

Число заявок, находящихся под обслуживанием, равно числу занятых каналов:

(75)

Среднее число заявок в очереди:

(76)

Тогда среднее число заявок в системе:

(77)

Среднее время пребывания заявки в системе (в очереди):

(78)

(79)

Многоканальную СМО с неограниченной очередью можно рассмотреть в системе Mathcad.

Пример 1 :

Салон-парикмахерская имеет 5 мастеров. В час пик интенсивность потока клиентов равна 6 человек. В час. Обслуживание одного клиента длится в среднем 40 минут. Определить среднюю длину очереди, считая ее неограниченной.

Фрагмент решения задачи в Mathcad.

Пример 2:

В железнодорожной кассе имеются 2 окна. Время на обслуживания одного пассажира 0,5 минут. Пассажиры подходят к кассе по 3 человека. Определить все характеристики системы.

Фрагмент решения задачи в Mathcad.

Продолжение решения задачи в Mathcad.

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

  • - заняты только два канала (любых), ;
  • - заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Расчеты основных показателей функционирования системы, имеющей nканалов обслуживания, с ограничением мест в очереди, проводятся аналогично тем, которые были сделаны для системы с неограниченной очередью. Особенностью функционирования систем с ограничением длины очереди является конечное число состояний системы.

Пусть на каналы обслуживания поступает простейший поток требований интенсивностью λ. Поток обслуживания, поступающий с одного канала, также простейший и имеет интенсивность μ. Число мест в очереди ограничено и равно т.

По числу заявок, находящихся в системе, обозначим состояния системы:

S 0 - состояние простоя;

S п - состояние системы, когда все каналы заняты обслуживанием;

S п+1 - все каналы заняты, одна заявка находится в очереди;

S п+т - в очереди т заявок.

Так как потоки заявок и обслуживания ординарны, граф состояний изображается в виде схемы гибели и размножения. Отличие от подобной схемы для неограниченной очереди состоит только в том, что число состояний конечно. Граф состояний такой системы изображается в виде схемы на рисунке номер 7:

λ λ λ λ λ λ

……. …….

S 0 S 1 S 2 S n S n+m

μ 2μ 3μ ………. nμ nμ ……

Рисунок 7: Многоканальная СМО с ограниченной очередью.

Составим систему алгебраических уравнений для нахождения финальных вероятностей состояний:

Откуда получим формулы Эрланга для многоканальной системы с ограниченной очередью:

Последние т слагаемых в скобках представляют собой сумму т первых членов геометрической прогрессии со знаменателем ρ/n которая равна:

Таким образом, для вычисления р 0 получим формулу:

Формулы для вероятностей предельных состояний будут иметь вид:

Приведем формулы для расчета основных показателей эффективности работы системы.

Число каналов, которые необходимо иметь, чтобы система справлялась с потоком заявок, определим из условия

В этом случае выполняется соотношение ρ < 1.

Вероятность отказа в обслуживании заявки определим как вероятность того, что при поступлении заявки в систему все nее каналов будут заняты, и в очереди заняты все mмест:

Отсюда вероятность обслуживания (а также и относительная пропускная способность системы) равны вероятности противоположного события:

Абсолютная пропускная способность - число заявок, обслуженных системой в единицу времени:

Так как каждый канал обслуживает μзаявок в единицу времени, то среднее число занятых каналов можно вычислить:

Среднее время обслуживания каналом одной заявки:


Среднее число заявок в очереди:

Среднее число заявок под обслуживанием равно среднему числу занятых каналов:

Среднее число заявок в системе (под обслуживанием и в очереди) равно:

Многоканальную СМО с ограниченной очередью можно рассмотреть в Mathcad.

Пример :

Площадка АЗС вмещает не более 3-х машин одновременно, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится. Интенсивность потока обслуживания λ=0,5 машин в минуту. Интенсивность потока обслуживания μ=0,4 машины в минуту. Определить все характеристики СМО.

Фрагмент решения задачи в Mathcad.

Продолжение задачи в Mathcad.